Adaptive Estimators for Parameters of the Autoregression Function of a Markov Chain
نویسنده
چکیده
Suppose we observe an ergodic Markov chain on the real line, with a parametric model for the autoregression function, i.e. the conditional mean of the transition distribution. If one speciies, in addition, a paramet-ric model for the conditional variance, one can deene a simple estimator for the parameter, the maximum quasi-likelihood estimator. It is robust against misspeciication of the conditional variance, but not eecient. We construct an estimator which is adaptive in the sense that it is eecient if the conditional variance is misspeciied, and asymptotically as good as the maximum quasi-likelihood estimator if the conditional variance is correctly speciied. The adaptive estimator is a weighted nonlinear least squares estimator, with weights given by predictors for the conditional variance.
منابع مشابه
Eecient Estimation in Markov Chain Models: an Introduction
We outline the theory of eecient estimation for semiparametric Markov chain models, and illustrate in a number of simple cases how the theory can be used to determine lower bounds for the asymptotic variance of estimators and to construct eecient estimators. In particular, we consider estimation of stationary distributions of Markov chains, of autoregression parameters and innovation distributi...
متن کاملNew Approaches in 3D Geomechanical Earth Modeling
In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملEstimators For Partially Observed Markov Chains
Suppose we observe a discrete-time Markov chain at certain periodic or random time points only. Which observation patterns allow us to identify the transition distribution? In case we can identify it, how can we construct (good) estimators? We discuss these questions both for nonparametric models and for linear autoregression.
متن کاملEstimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring
In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...
متن کامل